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Abstract– This paper presents a modified optimal
controller for stabilizing a multimachine power system.
The design method does not need the specification
of weighting matrices. The eigenvalues of
electromechanical modes would be shifted to a pre-
specified vertical strip. For practical implementation,
the proposed method design using an optimal reduced
order model whose state variables are torque angles
and speeds. The reduced order model retains their
physical meaning and is used to design output feedback
controller that takes into account the realities and
constraints of the electrical power systems. Effectiveness
of this controller is evaluated and example, a
multimachine power system is given to illustrate the
advantages and effectiveness of the proposed approach.
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1. Introduction

The poor damping of electromechanical oscillation is
symptomatic of intrinsic weaknesses in the power
system. In some interconnections the situation is
worsened by the growth of inter-utility wheeling, which
is dictated by the economical constraints in modern
power systems. These factors combine to bring the
typical operating state closer than ever to the system
stability limits and to make the damping of
electromechanical oscillations a recurrent problem in the
several power systems. Since the introduction of new
control systems to the uncertain and multivariable
environment of complex power systems is a slow
process, which incurs a variety of risks, the full
utilization of existing Power System Stabilizers (PSS) is
essential for enhance the damping of low-frequency
oscillations in the range 0.5 to 2 Hz, i.e. dynamic or
steady-state stability of power systems [1-2].
Considerable efforts have been placed on the synthesis
of power system stabilizers in multimachine power
systems [3-9].

The design of PSS can be formulated as an optimal
linear regulator control problem. However, the
implementation of this technique requires the design
estimators. This approach in increases the
implementation cost and reduces the reliability of the
control system. These are the reasons that a control

scheme use only some desired state variables such as
torque and speeds.

In recent years, the modal control design has been
used in power systems to shift the dominant eigenvalues.
Different methods have been proposed to assign
eigenvalues by modifying the weighting matrix of the
quadratic performance index. Optimal and sub-optimal
control strategies on the basis of linear system theory
using various system states and measurable output as
input to the controller have also been attempted [10-11].

Although the closed-loop system constructed by using
the optimal control theory has some advantages, they are
still many problems to solve. One of the most serious is
that it is rather difficult to specify the control
performance described in terms of a quadratic
performance index. The weighting matrices usually
would be decided based on trial and error to give
satisfactory performance. It is difficult to determine the
weighting matrices of the performance index.

This paper presents a linear quadratic controller such
that the optimal closed-loop system has eigenvalues
lying within a vertical strip in the complex s-plane.
Aiming at improving system stability which the design
method does not need the specification of the weighting
matrices. In this work, the desired positions of the
eigenvalues are achieved without convergence
problems. One basic difficulty of the state feedback
control is that it is usually impractical since some of
system states cannot be measured. An output feedback
controller is preferred. The gains of the proposed
controller are obtained from reduced order model and
strip eigenvalue assignment.

The proposed method has been applied to two cases:
one machine infinite bus system and a multimachine
power system. The results of the study are presented to
demonstrate the effectiveness of the proposed controller.
A comparison between the performance of the proposed
controller and the optimal reduced order model are also
included.

The attractive futures of this paper are as follows:
(1) The optimal reduced order model is used to retain

the physical meanings of the desired state variables
and the deleted modes are optimized.

(2) By using strip eigenvalue assignment the desired
positions of eigenvalues are achieved without
convergence problem. The design method does not
need the specification of the weighting matrices.

(3) The output state feedback is used to design the
power system stabilizer and the type of the
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controller is simple and easy to implement.

2. Optimal Reduced Order Model

The linear model of the electrical power system can be
described by the following state space representation:

BuAxx 


(1)
where x and u are the nx1 state vector and mx1 input
vector, respectively. A and B are constant matrices of
appropriate dimensions.

Since the reduced order model derived in [13] is used
in the following study, the process of evaluating the
reduced order model is abbreviated as follows without
proof.

The reduced order model is the derived using the
following system whose first m variables are the desired
variables z, which are speeds and torque angles in the
proposed approach. The similarity transformation T is
obtained in [13].

   x Ax Bu

  (2)

z I xm [ , ]0 (3)

where






x Tx

A TAT

B TB







1

Im = m x m identity matrix

Assume that the eigenvalues of A are distinct this will
actually be the case in the power system.

Let V = [V1, V2, . . ., Vn ] where Vi is the right
eigenvector of A associated with λi. Let W = V-1,

Define   Wx

Then



  u (4)

z D  (5)

where

  WAV =  diagonal ( λ1, λ2, . . ., λn )

 


WB

D Im



[ , ]V0
These equations can be arranged and written in partition
form as:

 

 1 1 1 1  u (6)

 

 2 2 2 2  u (7)

z D D 1 1 2 2  (8)

where
Λ1 contains modes to be retained
Λ2 contains modes to be eliminated

Assume the reduced order system we are sought to
determine will be of the form as follows:

z Fz Gu

  (9)

The evaluation algorithm of F and G proposed in [13]
are abbreviated as follows:

F D D 
1 1 1

1 (10)

Let Vm be the modal matrix associated with eqn.(10).
Define

F V FVm m 1 (11)

G V Gm 1 (12)

C V Dm 1
2 (13)

 1
1

1 1 V Dm (14)

Then
S C F C 2 (15)

    ( )F FT 1 (16)

R S  (17)
Let αi = λm+i , i = 1, 2, . . . , n-m.
Then Λ2 = diagonal (α1, α2, . . . , αn-m )
The (i,j)th element of the mxp matrix is given by:

 ij
ij

i j

R


 
(18)

where the subscript * denotes complex conjugate.
   1 (19)

Let K C  1 2 (20)

Then G K  2 (21)

And G V Gm (22)

3. Strip Eigenvalue Assignment

Consider a linear time-invariant controllable system
that is described in the state space by:

x t Ax t Bu t


 ( ) ( ) ( ) (23)
y t Cx t( ) ( ) (24)

where x(t), u(t), and y(t) are the nx1 state vector, mx1
input vector, and px1 output vector, respectively. A, B,
and C are constant matrices of appropriate dimensions.

In the design of a conventionally optimal control
system, the control vector is given by

u t Kx t( ) ( )  (25)
where K is the mxn state feedback control matrix
designed to minimize the following quadratic
performance index:

J x Qx u Ru dtT T 


1
2

0

( ) (26)

In eqn.(26) the weighting matrices Q and R are nxn
non-negative and mxm positive definite symmetric
matrices, respectively. The feedback gain in eqn.(25) is
K (=R-1BTP) with P being a symmetric positive definite
matrix, which is solution of the following algebraic
matrix Riccati equation,

A P PA PBR B P QT T
n   1 0 (27)

and the eigenvalues of A-BK, denoted by Λ(A-BK), will
lie in the open left half plane of the complex s-plane.

In conventionally optimal system analysis, the gain in
eqn.(25) is designed by roughly selecting weighting
matrices according to physical reasoning. Because of
complexity, the matrices Q and R are commonly chosen
as diagonal matrices.
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The eigenvalues of the closed-loop system are
denoted by Λ(A-BK) = [λ1, λ2, ..., λm, λm+1, ..., λn]. In
order to improve the system performance, the
eigenvalues λ1 through λm will be selected and shifted to
a desired region. To achieve this results the weighting
matrix R in the eqn.(27) is set to be an identity matrix
for equal weighting of the m control inputs, and the
weighting matrix Q must be given, but in large power
system, it is not easy to determine those weighting
matrices. The weighting matrices usually are determined
by trial and error to obtain satisfactory performances. To
overcome this difficulty, a novel approach for designing
the optimal eigenvalues assignment will be proposed in
the following discussion. The design method in this
paper shifts the closed-loop eigenvalues to a pre-
specified vertical strip without the need of weighting
matrices.

Let (A, B) be the pair of the open-loop system
matrices in eqn.(23) and h  0 represent the prescribed
degree of relative stability. Then the closed-loop matrix

A A BR B Pc
T  1 ~

has all its eigenvalues lying on the

left side of the -h vertical line as shown in Fig. 1(a),

where the matrix
~
P is the solution of the following

Riccati equation [12];

( )
~ ~

( )
~ ~

A hI P P A hI PBR B P Qn
T

n
T

n     1 0 (28)

Note that in eqn.(28) with Q = 0n, the unstable
eigenvalues of (A + hIn ) are shifted to their mirror
image positions with respect to the -h vertical lie, which
are the eigenvalues of the closed-loop system matrix Ac.

Assume that h1 and h2 are two positive real values to
determine an open vertical strip of [-h2, -h1] on the
negative real axis as shown in Fig. (1b) and give an nxn

matrix
~
A A h I  1 .

Fig. 1 Complex s-plane

The control law changed to be

u t Kx t( )
~

( )  (29)

with the feedback gain
~ ~
K R B PT 1 . The matrix

~
P is

the solution of the following modified Riccati equation:
~ ~ ~~ ~ ~
A P PA PBR B PT T

n  1 0 (30)

The gain ρis selected by

  


 




1

2 2

1

2
2 1 2 1h h

tr A

h h

tr BK. (
~

) (
~

)
(31)

where )K
~

tr(B
2

1λ)A
~

tr(
n

1i

i 




 and  i i n ( , , , )1 2 

are the eigenvalues of
~
A in the right half-plane of the

complex s-plane. The optimal closed-loop system
becomes

x t A BK


 ( ) (
~

) (32)

Eqn.(32) consists of a set of eigenvalues which lie inside
the vertical strip of the [-h2, -h1] as shown in Fig. (1b).
In eqn.(30) for equal weighting of the m control inputs,
we can let R be unity matrix. These solving the Riccati
eqn.(30) does not need a Q matrix, so it is easy to design
an optimal controller for power system oscillation
damping.

4. Output Feedback Excitation Control Design

To avoid the drawback demonstrated in the above
section; we should use the optimal reduced order model
derived in [13] to retain the physical meanings of the
output states which also the entries in the strip
eigenvalue assignment we are interested in. By using the
reduced order model, the system in eqn.(1) can be
reduced to the following form:




 uBxAx rrrr (33)

where
xr  Rmx1 : state vector to be retained consisting

of torque angles and speeds in
electric power system.

Ar , Br : constant matrices of reduced order
model with appropriate dimensions.

The control law can be written to the following form:
u K xr r
   (34)

with the feedback gain K R B Pr r
T 1 ~

. The matrix
~
P is

solution of the following modified Riccati equation
~ ~ ~~ ~ ~
A P PA PB R B Pr

T
r r r

T  1 0 (35)

where
~
A A h Ir r  1 . The gain ρis selected by using the

expressions given in section 3.
Fig. 2 illustrates how the theory of the above regulator
able to implemented by a PI controller.

Fig. 2 PI stabilizer design formulated as an output
feedback regulator problem

Im Im
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5. Simulation Results

To assess the proposed method in the case of
multimachine system, the system shown in the Fig. 3,
taken from [23], is studied.

Fig. 3 Multimachine system

The model given in [23] is

x Ax Bu

y Cx


 


(36)

where

xT  [ ]       1 2e e e e1 q1
'

FD1 2 q2
'

FD2

A

0.244 -0.0747 -0.1431 0    0  0.0747  0.0041 0
  377       0        0          0    0      0         0        0
0 -0.046 -0.455  0.244   0      0.046     0.13       0
0 -398.56 -19498.8 -50      0     398.58 -3967     0
0    0.178 -0.0433   0 -0.2473 -0.178 -0.146   0
0       0     0      0 376.99     0      0      0
0    0.056   0.1234         0     0 -0.0565 -0.3061 0.149
0 -677.39 -10234.22  0     0  677.78 -





13364.16 -50

B
0   0  0 25000   0   0    0    0
0   0  0     0   0   0  0     25000












































T

The eigenvalues of the system as shown in Fig. 3
without control are listed in the first column of Table 1.
The first pair of eigenvalues is electromechanical mode.
It can be observed from Table 1 that the minimal
damping ratio of electromechanical mode is 0.0092, so
that it is not satisfactory. To improve the system
dynamic performance, this mode should be shifted
toward certain desirable location. In the proposed
method, if we choose h1 = 3.0 and h2 = 3.5, the
electromechanical and other modes with absolute real
parts less than h1 = 3.0, will be shifted to the vertical
strip of [-h2, -h1] = [-3.5, -3.0]. The other modes will not
be changed (see, subsection 5.1). The minimal damping
ratio of that mode is improved to be 0.267 in this
proposed method, that its inside the acceptable range [1-
2]. Two output feedback schemes are compared: (1)
optimal reduced order model, and (2) proposed method.
It is shown from Table 1, that the relative stability of the
proposed method is much better than optimal reduced
order model [23]. The feedback gains are given in Table
2. The transient responses of the angular frequencies to a
5 % change in the mechanical torque of machine 1 and
machine 2 are shown in Fig. 4 and Fig. 5, respectively

Table 1 System eigenvalues

Open-Loop Reduced Order
Model

Proposed Method

-0.0904±j9.8430
-0.0006
-0.2443
-25.1741±j67.8187
-25.2329±j30.3073

-0.6120±j10.2843
-1.9248±j1.9185
-23.3329±j67.2307
-24.9273±j29.8745

-3.2634±j11.7720
-3.1648±j2.8601
-21.8258±j66.6676
-22.3723±j27.3902

Vertical strip in h2 = 3.5 ; h1 = 3.0

Table 2 Feedback gains

Reduced Order Model
u1 u2

Proposed Method
u1 u2

Δω1

Δδ1

Δω2

Δδ2

196.5413    32.4768

1.2387     0.1697

59.4160     0.3957

0.1028      .3081

36.6213 4.0898

0.3751 0.0918

6.3898 16.3856

0.0570     0.0912

ρ =  0.5216
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Fig. 4 Transient responses of the angular frequencies to a 5 %
change in the mechanical torque of machine 1

M1

M2 Load
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Fig. 5 Transient responses of the angular frequencies to a 5 %
change in the mechanical torque of machine 2

6. Conclusions

Stabilizing a multimachine power system is achieved
using an output feedback excitation control. The reduced
order model retains the modes that mostly affect some
desired variables which are usually the variable or
measurable variables. In this analysis these variables are
torque angles and angular frequencies (speeds). The
electromechanical mode can be shifted to a pre-specified
vertical strip without effect the other modes. Starting
with the optimal reduced order model approach, the
algorithm for the designing output feedback excitation
controller is constructed. The design method is very
simple and avoids the difficulty of choosing weighting
matrices. Simulation results indicate that the proposed
controller provides an effective means for improving the
damping characteristics of the power system.
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